

SURVEY

PreCam Results & Plans

(Version: 9 May 2011)

Douglas L. Tucker

DES Directors' Council Review 10-11 May 2010

(FNAL)

The PreCam Survey Strategy as Originally Planned

DARK ENERGY		
DARK ENEROT		
SURVEY		

- I. Aug 11-31: h/w install. and commiss.; Sept 1-15: on-sky commissioning
- II. Sept 15-Sept 27, Nov 16-30, Dec 9-Jan 24 is devoted to observing 30° grid

August-September Problems

DARK ENERGY SURVEY

Poorly Manufactured 2ndary Mirror

Broken Shutter

FITS header problems, (esp. w.r.t. adding RA,DEC from Curtis-Schmidt TCS)

```
SIMPLE = T / conforms to FITS standard

BITPIX = 16 / array data type

NAXIS = 0 / number of array dimensions

EXTEND = T

...

RA = '25:0:0.0' / [HH:mm:ss.ss] RA for center of this detector

DEC = '91:0:0.0' / [DD:mm:ss.ss] Dec for center of this detector
```


August-September Successes

DARK ENERGY SURVEY

- 1. Safely shipped PreCam, PreCam computers, PreCam CCDs, and auxiliary equipment to CTIO and mounted on the Curtis-Schmidt (C-S).
- 2. Hardware upgrades to C-S, including new TAMU dome flat system.
- 3. Quick Reduce and data transfer installed on PreCam computers
- 4. Preliminary observing scripts written.
- 5. Realigned optics with powerful new quantitative technique.
- 6. Identified problems to be fixed.
- 7. PreCam on sky!
- Built successful PreCam team!

* Sep27

Sep24

Sep23

Final PreCam Survey Strategy

(original, smaller secondary mirror; less time)

DARK ENERGY SURVEY

- I. Aug 11-31: h/w install. and commiss.; Sept 1-15: on-sky commissioning
- II. Sept 15-Sept 27, Nov 16-30, Dec 9-Jan 24 is devoted to observing 30° grid Sept 1-27 was devoted on-sky commissioning and debugging of h/w Nov 16-c. Nov 24 was devoted s/w commissioning and on-sky tests.

c. Nov 25 – Jan 20 was devoted to Stripe 82 and 30° grid

Stripe 82: 10x in *grizy*

30° grid: 6x in *gri*

Nov-Jan: The Data

- 64 nights allocated (Nov 16-Jan 20 minus Dec 24-25)
 - 1 night lost to weather
 - 2 nights lost to software meltdown on original DAQ computer
 - 2 nights lost to shutter breaking
 - 4 nights devoted to engineering due to shutter-sticking
 - 1 night lost due to venting dewar to ambient atmospheric pressure
 - 1 night lost due to problems with installing new 12-channel DAQ card
 - 2 nights devoted to end-of-run engineering tests
- 51 nights on sky (c. 80% of the 64 nights allocated)
- ~24,000 images

Actual PreCam Coverage as of Jan 20

DARK ENERGY SURVEY

Originally Planned

Actual PreCam Coverage as of Jan 20

DARK ENERGY SURVEY

Originally Planned

Final (*i*-band)

Actual PreCam Coverage as of Jan 20

Jan 12 Actual PreCam Coverage as of Jan 20

- After Jan 12, we pursued a modified tiling strategy, so these exposures do not show up.
- These post-Jan 12 exposures are primarily in the South-East corner of the PreCam grid pattern.

Data Processing

DARK ENERGY	,
SURVEY	

- DES-Brazil Effort
 - The official data processing.
 - Uses a PreCam-specific version of the Quick Reduce Pipeline.
 - Quick Reduce in turn uses the DESDM code.

FNAL/ANL Effort

- R&D effort using custom scripts in order to understand the data and obtain some quick results.
- Provides feedback to the official data processing.

"Golden Nights"

- A set of 5 nights with robust FITS headers, no known problems, and target observations in SDSS Stripe 82.
- Used by both data processing efforts for rapid testing and algorithm development.

DARK ENERGY SURVEY

A Pretty Bad Case of Banding and Streaking

Original Image

After row-by-row overscan subtraction

After horizontal streaking correction

11

DARK ENERGY SURVEY

- Horizontal banding & streaking affect
 ≈40% of the raw
 PreCam standard star field and science target images.
- After correcting, horizontal banding & streaking affect only about 6% of the processed images.

Results: Initial Photometry for a Single Image

Results: Photometry over a Full Night

- Night of 13 Jan 2011 UT.
- All data from that night matching the extended list of USNO u'g'r'i'z' standards.
- Corrections for overall ZPs and for airmass (using siteaverage first-order extinction coefficients)
- No correction for color terms.
- RMS = 2-4% (mag < 13.0).

Credit: S. Kuhlmann, H. Spinka

Results: SDSS-DES Color Terms

wavelength (lambda)

Results: DES-SDSS Color Terms

- Synthetic color term relation plotted with (binned) observed color term relation from PreCam for the night of 15 Dec 2011 UT.
- The observations
 have relatively few
 blue stars compared
 with the Pickles
 stellar library.

- 1. Quick Reduce Commissioning & Experience and Dramatic Improvement in the DES-Brazil Portal
 - First use of QR during live observing at CTIO
- 2. ObsTac Commissioning & Experience
 - Substantially increased efficiency
 - Basic design showed its flexibility
 - Survey Strategy: Full Moon crosses Stripe 82 (affects survey strategy for izy)
- 3. DECam Control System (CompactRIO) Experience
 - 24K shutter exposures with no failures, plus Temp/Vacuum monitoring over 7 months
- 4. "Live-fire" Experience with SISPI and Related Observing Software
 - A special PreCam branch of SISPI
- 5. Observing run staffing and training
 - 16-hour shifts combined with runs longer than 7 nights can be fatiguing, especially when hardware or software problems arise

W	
40	

Plans

DARK	ENERGY
SURVE	-γ

- 1. Determine final detailed plan for official processing.
- 2. Finish processing data.
- 3. Analyze data.
- 4. Determine how much more observing time would be needed to achieve the original PreCam goals (esp. with regards to global relative calibrations of DES), and the consequences of de-scoping if that proves necessary.
- 5. It is likely that PreCam would need another full season or two half seasons, since Aug/Sept 2011 might not be available? to fully achieve its original goals.

A segment of *i*-band PreCam observations in Stripe 82.

Extra Slides

DARK ENERGY______SURVEY

The PreCam Survey: Benefits to DES

DARK ENERGY
SURVEY

- 1. Early on-sky tests with a "1/32nd scale" DECam.
 - a) Hardware, software, and observing experience (see bulleted list of Lessons Learned).
- 2. DES *grizy* standard stars (*y*-band in particular), supplementing the Stripe 82 standards and Smith et al. Southern *u'g'r'i'z* standards and permitting a much finer time-resolution of extinction measurements during DES operations
 - a) DES survey strategy simulations indicate that DES nightly observations will cross a PreCam field about once an hour on average.
 - b) These DES observations of PreCam fields reduces the need for additional dedicated standard star observations during the night by the Blanco *this can increase DES observing efficiency by up to 10*%, or, in monetary terms, a savings of 10% x \$10,000/night x 525 nights = \$525,000.
 - c) The PreCam sparse grid also provides improved spatial coverage of calibration fields throughout the DES footprint any part of the DES footprint is that much closer to a calibration field.
- 3. Determinations of the transformations between SDSS *griz* and DES *griz* (via observations in SDSS Stripe 82).
- 4. Identification of candidate DA white dwarfs (in conjunction with SkyMapper *u*), useful for DES absolute calibrations.
- 5. Stars that can be used for "quick look" diagnostics of the DES data in during DES operations.

PreCam on the Curtis-Schmidt

Photo Credits: R. Ogando

Results: Photometry in SDSS Stripe 82

- Night of 7 Jan 2011 UT.
- 11 *g*-band images within SDSS Stripe 82.
- Corrections for overall ZPs and for airmass (using site-average first-order extinction coefficients)
- RMS = 9% (mag = 14 19).
- No correction for color terms or for variations across focal plane.

Results: DES-SDSS Color Terms

DARK ENERGY SURVEY

- Synthetic color terms.
- Transmission curves from the PreCam set of 100mm x 100mm DES grizy filters.
- Stellar libraries from Gunn-Stryker (GS) and Pickles (PASP).

Credit: V. Bragança

DARK ENERGY
SURVEY

1. Quick Reduce & DES Portal were tested and substantially improved.

Credit: M. Maia

DARK ENERGY		
SURVEY		

Quick Reduce & DES Portal were tested and substantially improved.

Credit: M. Maia

29

DARK ENERGY
SURVEY

2. ObsTac substantially increased observing efficiency, and its basic design demonstrated its flexibility...

DARK ENERGY
SURVEY

2. ObsTac substantially increased observing efficiency, and its basic design demonstrated its flexibility...

A Processed *i*-band PreCam Image from Jan 13

DARK ENERGY SURVEY

DARK ENERGY SURVEY

After

DARK ENERGY SURVEY

After

DARK ENERGY SURVEY

DARK ENERGY SURVEY

Before

After

DARK ENERGY SURVEY

